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Introduction: Evolution in Architectures and Algorithms

Combinatorial scientific computing has played a pivotal role in helping applications achieve high
performance in the distributed memory systems that have dominated parallel computing in the past
few decades. This success has been accomplished both by expanding the frontiers of combinatorial
scientific computing (through various new partitioning, ordering, coloring, and matching methods)
and by representing various problems of interest (e.g., reduced communication volume, social network
analysis, community detection) in combinatorial terms in order to solve them efficiently. While many
challenges were faced in this work, distributed memory systems were somewhat simple compared to
the systems that will be needed to achieve exascale: their processors were largely homogeneous; their
communication model was straightforward; and their programming paradigm (message-passing) was
well-defined and standardized (via MPI).

Exascale systems, by necessity, will be more complicated, but combinatorial scientific computing
has many new roles to play. Combinations of multicore CPUs and accelerators add new complexity
to traditional partitioning strategies, which now must be more aware of the underlying architecture
than ever before. Memory hierarchies complicate communication models such that any data movement
must be considered a form of communication. Data ordering plays a greater role in maintaining data
locality in multithreaded applications. Matching and coloring can be used to more optimally map
tasks to processors and exploit underlying parallelism. Indeed, combinatorial scientific computing
will extend beyond the application level, incorporating architectural information into models and
application information into run-time systems. A few examples of this evolution of algorithms, ranging
from redefinition of traditional partitioning problems to closer integration of algorithms with run-time
and operating systems, are described below.

Flexible Partitioning for Run-time Performance Optimization

With the massive push towards on-node parallelism and accelerators (GPUs, MICs), there are many
new challenges for the next decade. Current partitioning methods, for example, are designed for the
SIMD programming model, where they partition the problem and assign entities to an owner. While
this owner-computes model has worked very well in the past, modern architectures, programming
models (multithreading), and run-time systems require a redefinition of traditional partitioning. In
multithreaded environments, for example, run-time systems have options to use various scheduling
strategies for better performance. The run-time systems, however, are disconnected from the load
balancing and the “communication cost” information that can be provided by applications. The run-
time scheduling could be improved by better guidance from partitioners, as partitioners have both the
load balance and communication cost information.

However, in multithreaded environments, prescribing one owner to an entity is too limiting. A
better approach is to assign some entities to a single owner and some entities to a range of owners,
any of whom could perform computations on the entities; the range of owners can be thought of as a
“thread team.” This approach may have advantages over simple over-partitioning of a problem into
a large number of tasks with arbitrary ownership (e.g., [6]), where data locality between tasks is not
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considered. With thread teams, the run-time system can schedule entities to cores in ways that balance
the load while still maintaining data locality.

The integration of this guidance at the level of run-time systems requires new research into partition-
ing algorithms and extension of run-time systems. While flexible assignment of tasks has been studied
before [7], that work was in the context of assigning unique owners, not assigning a group of owners.
The run-time systems have to improve as well in order to take better guidance from applications than
a simple work-chunk size.

Architecture-Aware Combinatorial Algorithms

To achieve high performance in exascale systems, algorithms must be more aware of the com-
puters’ processors, accelerators, memory hierarchies, and network topology, and must integrate that
information with application work loads and communication patterns. Incorporation of architecture
information has begun — for example, hierarchical partitioning strategies have become more common
for multicore systems [8, 9] — but much work remains. Partitioning for combinations of multicore
processors and accelerators, controlling costs of data transfer from CPU to accelerators, scheduling
computations to maximize data reuse, and partitioning of data into fixed-size parts to fit into acceler-
ator memory are all areas requiring further research and development.

Moreover, many aspects of parallel computing currently ignore information that could be exploited
for better parallel performance. For example, scheduling systems (e.g., SLURM [5]) allocate and assign
resources, but do not account for dependencies between application tasks in assigning processes to
cores. Intelligent mapping (matching) strategies that account for both the application communication
patterns and architecture topology are needed to more effectively assign tasks to node allocations and
the specific node-architectures within them.

New algorithms that exploit real-time application and system performance information also are
needed to effectively utilize resources in exascale systems. Such algorithms could, for example, dy-
namically allow cores to be undersubscribed if using more cores would cause memory contention and
hurt overall execution time. Partitioning algorithms could adapt to the greater variability in exascale
systems; for example, they could reassign work to balance loads when cores are under-clocked for en-
ergy savings or heat reduction. In such cases, lightweight repartitioning within subsets of cores may
be more appropriate than current global repartitioning strategies.

Many pieces of the exascale solution exist: for example, hwloc [3] provides static node-level archi-
tecture information; OVIS/LDMS [2] aggregates real-time system-level metrics; LibTopoMap [4] maps
tasks to network topologies; Zoltan [1] provides a toolkit of combinatorial algorithms. But their effec-
tive integration is an important area of research. When new combinatorial algorithms are developed
that blend these technologies to incorporate real-time, architecture-specific data with application data,
the greatest benefit to exascale computing will be realized.
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